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Abstract 
A single exponentially weighted moving average (EWMA) chart is effectively used for monitoring 

the process mean and variance simultaneously. In this paper, three single EWMA-type control charts 
including sum of square EWMA (SS-EWMA), maximum EWMA (MaxEWMA), and EWMA-semicircle 
(EWMA-SC) charts are compared under Lorenzen and Vance’s cost model integrating Taguchi’s loss 

function.  The optimal decision variables, namely sample size n , sampling interval time h , control limit 

width L , and smoothing constant , are obtained by minimizing the expected cost function. Via 
simulations, the EWMA-SC charts have the smallest expected cost among these charts when a process has 
large shifts. However, the MaxEWMA charts have the smallest expected cost among these charts when a 
process mean shifts.  

 

 

1. Introduction 
The exponentially weighted moving average (EWMA) chart was first introduced by Roberts 

(1959) and has been widely used to improve the quality of a process when small process shifts 
are of interest. Various types of EWMA charts have been sequentially proposed to monitor 
process shifts. The variable sampling interval (VSI) EWMA chart (Saccucci et al., 1992) and the 
variable sample sizes and sampling intervals (VSSI) EWMA chart (Reynolds and Arnold, 2001) 
are efficient in improving detection ability than fixed-type EWMA charts. Auto correlated 
observations are always generated by continuous product manufacturing processes. Facing this 
scenario, it is not advisable to use traditional control chart for monitoring process shifts. Harris 
& Ross (1991) discussed the impact of autocorrelation on the performance of EWMA charts, and 
showed that the average run lengths of these charts were sensitive to the presence of 
autocorrelation. Most of control charts are established on the belief that the observations of a 
process are assumed to follow a normal distribution. When the observations are from a non-
normal or unknown distribution, it is suitable to construct control charts based on a 
nonparametric approach. Bakir (2006) proposed the nonparametric EWMA control charts for 
monitoring an unspecified in-control target process center. The proposed charts are more 
efficient than traditional normal-based control charts.  

Two EWMA charts are usually required to jointly monitor small process mean and variance 
shifts. However, recently, significant attempts have been made to design a single EWMA chart 
for monitoring the process mean and variance simultaneously. Researchers have presented 
designs of various single EWMA control charts, such as the MaxMin EWMA chart (Amin et al., 
1999), the Max chart (Chen and Cheng, 1998), the sum of squares EWMA (SS-EWMA) chart (Xie, 
1999), the maximum EWMA (MaxEWMA) chart (Chen et al., 2001), the EWMA-semicircle 
(EWMA-SC) chart (Chen et al., 2004). These charts transform the sample mean and sample 
variance into a single plotting statistic or two plotting statistics, one representing the mean and 
the other representing the variance, on the same chart.  
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The aforementioned control charts are designed from a statistical perspective. Statistically 
designed control charts are often measured using the desired in-control average run length 

0( )ARL  and out-of-control average run length 1( )ARL . In addition to the statistical design of 

control charts, another design perspective involves economic design. The objective of an 
economic design control chart is to minimize the expected hourly loss cost. Duncan (1956) first 

proposed the economic model of a X  control chart, wherein three parameters, namely sample 

size n , sampling interval h , and control limit width L  must be determined by cost minimization. 
This approach was generalized by Lorenzen and Vance (1986), who considered whether 
production continues during the period of searching for and/or repairing the assignable cause. 
Since then, various economic designs have been proposed for control charts (Montgomery, 1980; 
Ho and Case, 1994a; Park et al., 2004; Chou et al., 2006). Recently, Serel and Moskowitz (2008) 
and Serel (2009) presented a cost-minimization model to design the EWMA control chart based 
on quality-related production costs using the loss function.  

However, Woodall (1986) found that the optimal economic design control chart has poor 
statistical performance. One significant problem is that the optimal economic solution usually 

yields a considerably large risk of Type I error. The in-control 0ARL  of the control chart is 

usually too short to be practically acceptable. To improve the low statistical performance of the 
economic design control chart, some authors have expanded the pure economic model by 
incorporating additional statistical constraints, such as Saniga (1989), Montgomery et al. (1995), 
Chou et al. (2000) and Chen and Pao (2011), Yeong et al. (2013). Taguchi’s quadratic loss function 
has been integrated into the economic-statistical design most recently by Huang and Lu (2015) 
and Lu et al. (2013), who respectively proposed the economic-statistical design of MaxEWMA 
and SSEWMA. They found that the economic-statistical design results in a large improvement in 
statistical performance and a small increase in cost. 

The aim of this paper is to develop an economic-statistical design of the MaxDEWMA 
control chart by integrating the loss function into Lorenzen and Vance’s cost model. A numerical 

simulation is conducted to minimize the cost function under ARL  constraints. Moreover, a 
sensitivity analysis is conducted to assess the effects of the main input parameters on the 
objective function and decision variables. The rest of this paper is organized as follows. Section 2 
reviews the literature on SS-EWMA, MaxEWMA and EWMA-SC charts. In Section 3, Lorenzen 
and Vance’s cost model is briefly introduced. An illustrative example is presented in Section 4. 
Finally, Section 5 concludes.  
 

2. Review of the SS-EWMA, MaxEWMA and EWMA-SC charts 

Suppose  ijX ,  1,2,i  , and 1,2, , ij n  be observations of  size, 
in , in the thi  sample 

having a normal distribution with mean 
0 0   and standard deviation 

0 , where 
0  and 

0  are defined as target values of the process. When 0   and 1   indicate that the process is 

in control, otherwise the process has changed or drifted. 

Let 
iX  and 2

iS  denote the sample mean and sample variance of sample i , respectively. 

Then
iX ,  1,2,i   are independent normal random variables with mean 

0 0   and variance 

2 2

0 in  ; 2 2 2

0( 1)i in S    and  1,2,i   are independent chi-square random variables with 1in  

degrees of freedom; and 
iX  and 2

iS are independent. 
 

2.1 The SS-EWMA control chart 
According to Xie (1999), define the following two statistics: 
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where ( ) ( )z P Z z   , ~ (0 ,  1)Z N , 1 is the inverse function of  , and ( , ) ( )F w v P W w v  , 

where 2~ ( )W v . (These transformations and applications have been proposed by Quesenberry 

(1995)) 
Both 

iU  and 
iV  are independent standard normal random variables when the process in 

control, and that the distributions of 
iU  and 

iV  are both independent of the sample size 
in . 

Two EWMA statistics, each for the mean and variance, can be defined as 

1(1 )   ,   0 1  ,  1,2  ,i i iA U A i                                            (3) 

and 

1(1 )   ,   0 1  ,  1,2  ,i i iB V B i                                             (4) 

where 
0  A and 

0  B are the starting values, respectively. It is known that 
iA  and 

iB  are 

independent because 
iU  and 

iV  are independent, and when 0  , 1  , and 
0 0 0A B  , we 

have both 
2 ~ ( 0 ,  )

ii AA N   and
2 B ( 0 ,  )

ii BN  , where 2 2 2 1 (1 )
2i i

i

A B


  


     

. We then 

define the statistic of the SS-EWMA chart by combing the above two EWMA statistics defined as 
2 2  i i iSE A B  ,  1,2,i  .                                                    (5) 

Because the statistic iSE  is non-negative, the SS-EWMA chart has only an upper control 

limit (UCL), which is given by 

( ) ( )i iUCL E SE L Var SE                                                    (6) 

where ( )iE SE  and  ( )iVar SE  are the in-control mean and variance of the statistic 
iSE , 

respectively. L  is the control limit constant chosen to match the desired 
0ARL . To achieve the 

desired 
0ARL , the corresponding control limit constant L  and the smoothing parameter   is 

determined. 
 

2.2 The MaxEWMA control chart 
According to definition of Xie (1999), Chen et al. (2001) redefined the new MaxEWMA 

statistic defined as 

 max ,i i iM A B                                                            (7) 

Because the statistic 
iM  is non-negative, the MaxEWMA chart has only an upper control 

limit (UCL), which is given by 

( ) ( )i iUCL E M L Var M                                                    (8) 

where ( )iE M  and  ( )iVar M  are the in-control mean and variance of the statistic 
iM , 

respectively. L  is the control limit constant chosen to match the desired 
0ARL . To achieve the 

desired 
0ARL , the corresponding control limit constant L  and the smoothing parameter   is 

determined. 
 

2.3 The EWMA-SC control chart 
According to Chen et al. (2004), the statistic of a SC chart is defined as: 
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Let 
2

i
i i

n
H H



  . The EWMA-SC statistic 
iSC  can be defined from 

iH   as follows: 

1(1 ) ,   0 1 ,   1,2, ,i i iSC H SC i  

                                        (10) 

where   is the smoothing constant while 
0SC n  is the starting value of 

iSC . Because 
2~ ( )iH n  when 0  , 1   and 

1 2 in n n n    , and so we have the following results: 
*( ) ( )i iE SC E H n  ,                                                        (11) 

2 2 1 (1 ) 2  1 (1 )
( ) ( )

2 2

i i

i i

n
Var SC Var H

   

 


         

  
 

.                       (12) 

In addition, Equation (10) can be rewritten as: 

i i iSC Y Z n   ,                                                           (13) 

where 

2
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 with 

0 0 0Y Z  . 

Additionally, it is known that 
iY  and 

iZ  are also independent because 
iX  and 2

iS  are 

independent. 

The EWMA-SC chart only needs an upper control limit ( UCL ) as the 
iSC  is non-negative. 

The UCL  corresponding to Equation (10) is given by: 

2

1

i

2   1 (1 )
UCL ( ) ar(SC )  

2
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E SC L V n L

 
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and the UCL  corresponding to Equation (13) is given by: 

2

2
2   1 (1 )

UCL  
2

in
L

 


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


.                                             (15) 

Here, L  is the width of the control limits when the process is in the control state. The 

process is considered to be out of control whenever 
iSC  exceeds 1UCL  or ( ,  )i iY Z  is outside the 

control region  2 ( ,  ) :   UCL  i i i iY Z Y Z  , and some action should be taken. Indeed, the latter 

method of determining when a process is out of control is preferable, because the source of an 
assignable cause can be directly identified by plotting the location of the sample point on the 
chart. 
 

3. Cost model  
Lorenzen and Vance’s cost model (1986) is employed for determining the optimal decision 

values of the economic-statistical design of control charts. Some underlying assumptions in that 
cost model are: (1) The production cycle length is defined as the time interval from the start of 
the in-control state to the elimination of an assignable cause for the out-of-control state. (2) The 
time between the occurrences of an assignable cause follows an exponential distribution with a 

mean of 1/  hours. (3) Once the process is out of control, intervention is required to adjust the 
process and return it to the initial state of statistical control. The expected cost per hour, denoted 
by ( )E A , is derived by dividing the expected cost per cycle by the expected cycle length. Thus, 
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where, 
n  = sample size, 

h  = time interval between samples, 

  = smoothing constant of the control chart, 

L  = control limit constant of the control chart, 
  = expected time between an assignable cause and the prior sample, denoted by  
      [1 (1 ) ] / (1 )h hh e e        , 

sn  = expected number of samples taken while in control, denoted / (1 )h he e   , 

0  = target process mean, 

0  = target process standard deviation, 

0T  = expected time to search a false alarm, 

1T  = expected time to sample, inspect and plot each sample unit, 

2T  = expected time to search the assignable cause, 

3T  = expected time to repair the assignable cause, 

2   =1 if production continuous during searches, 

    =0 if production ceases during searches, 

3   =1 if production continuous during repair, 

    =0 if production ceases during repair, 
a  = fixed cost of sampling, 

b  = unit variable cost of sampling, 

0c  = the expected quality loss per unit of product when the process is in control,  

1c   = the expected quality loss per unit of product when the process is out of control, 

2c  = cost of investigating a false alarm, 

3c  = cost of searching and repairing an assignable cause. 

Traditionally, a product is classified as either conforming or nonconforming according to 
the specifications of the relevant quality characteristic. Quality costs are consequently incurred 
when products fall outside the specification limits. However, in practice, a product’s 
performance will gradually deteriorate as the design parameter deviates from the target value. 
A loss function was first introduced by Taguchi (1985) to describe the quality characteristic 
differs from the nominal. The loss refers to the quality cost that is incurred when the quality 
characteristic is off target even though it may conform to the specification limits. Taguchi’s loss 
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function has been broadly employed in industrial applications, especially in the economic or 
economic-statistical designs of control charts (Serel and Moskowitz, 2008; Serel, 2009; Yeong et 
al., 2013; Lu et al., 2013). The economic-statistical designs of control charts based on Taguchi’s 
loss function are investigated in this paper.  

Since the symmetric loss function is more common in applications, in this paper, we 

consider symmetric loss functions and the constant loss coefficient K  such that the quadratic 
function is presented as  

   
2( ) ( )QL x K x T  ,                                                            (16) 

where the quality characteristic x  has a probability density function ( )f x , the target value  T  is 

a parameter describing the risk aversion of the decision makers.    

    When the process is in control 0QJ  is the expected loss per unit of product and we denote it as 

follows:    

    2 2

0 0 0( ) ( ) [ ( ) ]Q QJ L x f x dx K T 



                                           (17) 

When the process is out of control, the process mean shifts to 
1 0 0     and/or the 

process variance shifts to 
1 0  . The expected loss per unit of product is named 1QJ  and 

represented as follows: 

    
2 2 2 2

1 1 0 0 0 0[ ( ) 2 ( )]QJ K T T                                               (18) 

Assume the production rate to be P  units per hour. The quality costs 
0c  and 

1c  in 

Lorenzen and Vance’s cost model are replaced with the two expected product losses 0QJ P  and 

1QJ P , respectively.  

    Consider the cost model integrating the loss function, wherein quality costs 
0c  and 

1c  are 

replaced by 0QJ P  and 1QJ P , respectively. Consequently, the expected cost (or loss) per hour, 

denoted by ( )E A , may be expressed as 
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    subject to 

         

*

0 0

, , ,0 1

ARL ARL

n I h L R  



   
 

Not only is the objective function ( )E A  a function of 
0ARL  and 

1ARL , but 
0ARL  and 

1ARL  

are functions of the charting parameters of the control charts. Hence, the optimal decision 
variables * * * *( , , , )n h L   of the economic-statistical design of the control charts based on loss 

functions are determined by minimizing the objective function ( )E A . Table 1 presents the 
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algorithmic description used to solve the objective functions of the economic-statistical designs 
of the control charts based on loss functions.  
 

4. An example 
The minimal expected cost and corresponding optimal decision variables are compared 

among the SS-EWMA, MaxEWMA, and EWMA-SC charts based on quadratic loss function. For 
this illustration, the following parameter values are employed to demonstrate the optimal 

economic-statistical design of the three charts: 5a  , 1b  , 2 300c  , 3 150c  , 0.01  , 

1K  , 0 2T  , 1 0.5T  , 2 2T  , 3 0T   {0,0.5,1,2}  , {1,1.5,2,3} , 2 1  , 3 0  , 1r  , and 

300P  . For the desired in-control process, 
0ARL  is set to 370. The optimal decision variables 

* * * *( , , , )n h L   and optimal values of the economic-statistical design for various SS-EWMA, 

MaxEWMA, and EWMA-SC charts based on loss function are summarized in Tables 1-3.  
Table 1. The optimal economic-statistical design of SS-EWMA charts under quadratic loss 

function 
 1.00   1.50   2.00   3.00   

0.00   

*n  - 5 2 2 
*  - 0.35 0.84 0.91 
*h  - 0.76 0.47 0.48 
*L  - 4.765 4.908 4.910 

1ARL  - 6.475 4.760 2.035 
min( )E A  - 346.60 360.84 404.11 

0.50   

*n  7 4 2 2 
*  0.19 0.42 0.80 0.90 
*h  1.88 0.72 0.48 0.48 
*L  4.476 4.814 4.909 4.991 

1ARL  7.381 5.332 4.288 1.994 
min( )E A  319.69 346.25 362.44 406.36 

1.00   

*n  4 3 2 2 
*  0.34 0.51 0.72 0.91 
*h  1.06 0.67 0.50 0.47 
*L  4.750 4.854 4.902 4.910 

1ARL  3.888 3.700 3.333 1.886 
min( )E A  331.76 350.56 367.74 413.12 

2.00   

*n  2 2 2 2 
*  0.58 0.70 0.77 0.91 
*h  0.63 0.57 0.53 0.46 
*L  4.880 4.901 4.908 4.910 

1ARL  2.269 2.141 1.940 1.589 
min( )E A  361.21 374.73 392.29 440.14 

 

Table 2. The optimal economic-statistical design of MaxEWMA charts under quadratic loss 
function 

 1.00   1.50   2.00   3.00   

0.00   
*n  - 5 3 2 
*  - 0.30 0.73 0.88 
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*h  - 0.74 0.58 0.46 
*L  - 3.347 3.436 3.444 

1ARL  - 6.834 3.709 2.140 
min( )E A  - 347.44 362.34 405.21 

0.50   

*n  7 4 2 2 
*  0.19 0.39 0.71 0.90 
*h  1.92 0.69 0.46 0.46 
*L  3.239 3.389 3.438 3.445 

1ARL  7.098 5.878 4.617 2.092 
min( )E A  319.40 347.74 363.81 407.21 

1.00   

*n  4 3 2 2 
*  0.35 0.48 0.73 0.90 
*h  1.08 0.65 0.48 0.46 
*L  3.374 3.412 3.440 3.445 

1ARL  3.726 3.943 3.540 1.971 
min( )E A  331.31 351.53 368.86 414.11 

2.00   

*n  2 2 2 2 
*  0.76 0.77 0.82 0.90 
*h  0.65 0.57 0.51 0.45 
*L  3.441 3.442 3.443 3.445 

1ARL  2.166 2.158 2.012 1.645 
min( )E A  360.48 374.87 393.02 440.99 

 

Table 3. The optimal economic-statistical design of EWMA-SC charts under quadratic loss 
function 

 1.00   1.50   2.00   3.00   

0.00   

*n  - 3 2 2 
*  - 0.15 0.23 0.41 
*h  - 0.67 0.55 0.51 
*L  - 3.110 3.617 4.194 

1ARL  - 6.525 3.669 1.864 
min( )E A  - 340.74 356.32 402.24 

0.50   

*n  7 3 2 2 
*  0.05 0.17 0.25 0.44 
*h  1.12 0.68 0.55 0.50 
*L  2.288 3.204 3.696 4.270 

1ARL  24.627 5.351 3.424 1.835 
min( )E A  330.80 342.93 358.52 404.56 

1.00   

*n  5 2 2 2 
*  0.16 0.19 0.30 0.47 
*h  0.94 0.56 0.55 0.50 
*L  3.024 3.444 3.874 4.339 

1ARL  5.732 4.659 2.870 1.753 
min( )E A  337.77 349.45 365.08 411.50 

2.00   *n  2 2 2 2 
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*  0.30 0.38 0.43 0.54 
*h  0.62 0.58 0.54 0.48 
*L  3.874 4.115 4.245 4.481 

1ARL  2.361 2.080 1.849 1.521 
min( )E A  361.84 374.22 391.34 439.06 

 

5. Conclusion 
A single EWMA control chart has good statistical performance in detecting both the mean 

and the variance shifts simultaneously. It only measures control chart from statistical 
performance viewpoint. Control charts based on pure economically are unable to satisfy 
requests in practice when they just pay attention to minimization quality costs but neglect the 
high false alarm rate. Therefore, this work investigates an economic-statistical design of SS-
EWMA, MaxEWMA and EWMA-SC control charts for monitoring process mean and/or 
variance by incorporating the Taguchi’s quadratic loss function into Lorenzen and Vance’s cost 
model. Numerical simulations are conducted to evaluate effects of main input factors on the 
optimal economic-statistical design of these three control charts.  

Numerical simulations reveal that the optimal sample size *n , sampling interval *h  and 
out-of-control 

1ARL  decrease as the magnitude of mean and/or variance shifts increases, 

obviously in small process shifts. However, the optimal control limit *L  and smoothing constant 

*  increase as optimal value of 
min( )E A  increases. Moreover, it is reasonable that the optimal 

value of 
min( )E A  increases as the mean shift   and/or variance shift   become large. Moreover, 

the MaxEWMA charts have the minimal cost when a process just has shifts in the mean. Once a 
process has shifts caused from the process variability, the EWMA-SC charts need minimal cost 
among these three charts. 
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