
The Business and Management Review, Volume 8 Number 3 November 2016 

 

7th International Trade & Academic Research Conference (ITARC), 7-8 November 2016, London, UK 60 
 

Rank reversal phenomenon in cross-efficiency evaluation of data 
envelopment analysis 

 

Yong B. Shin 
Francis Marion University, South Carolina, USA 

 

 

Keywords 
Multiple Criteria Decision Making (MCDM), Rank reversal, and Least Common Multiple (LCM)  
 

Abstract 
 This paper presents that the rank reversal occurs in other popular MCDM approach as well, 
cross-efficiency evaluation of data envelopment analysis (DEA), which has been alternative method for 
ranking decision making units (DMU) in the data envelopment analysis (DEA). This paper also attempts 
to illustrate that the proposed least common multiple (LCM) approach successfully addresses these rank 
reversal problems in decision support systems area. 
 

 

1. Introduction 
Analytic hierarchy process (AHP) (Saaty, 2009) has become a very popular multiple 

criteria decision making (MCDM) technique. AHP has been applied to diverse fields of study 
such as software evaluation, manufacturing systems, organizational performance evaluation, 
customer requirement rating, and financial industries. However, for nearly the same duration, 
AHP has also been criticized for rank reversals when a decision alternative is added or dropped, 
first noted by Belton & Gear (1983).  

In order to avoid rank reversal phenomenon in the AHP where such reversals should not 
take place, many other different mathematical approaches (Dyer, 1985; Schoner & Wedley & 
Choo, 1993; Barzilai & Golany, 1994; Lootsma, 1999) have been proposed. It is noticeable that 
none of these methods have resolved this problematic phenomenon and there are still on-going 
debates on how to avoid rank reversals. 

Rank reversal is also found in other popular MCDM approach as well, such as the cross-
efficiency evaluation of data envelopment analysis (DEA). This paper illustrates that the rank 
reversals occur in other MCDM method and presents that the proposed method successfully 
addresses these rank reversal problems in decision support systems area.   
 

2. Rank reversal in the cross-efficiency evaluation of data envelopment analysis (DEA) 
There are a wide range of MCDM problem solution techniques, varying in complexity 

and possible solutions. Each method has its own strength, weaknesses and possibilities to be 
applied. For example, Borda-Kendall (BK) method is the most widely used tool in determining a 
consensus ranking because of its computational simplicity. It uses a weighted ordinal ranking 
model in which each of a set of n alternatives was given an ordinal rank on a set of criteria. 
Simple Additive Weighting (SAW) is simple and the most frequently used multiple attribute 
decision making (MADM) tool. However, it is obvious that these popular MCDM approaches 
also suffer from rank reversal. In this section we illustrate that the rank reversals occur in cross-
efficiency evaluation of data envelopment analysis (DEA) MCDM approach.  

Cross-efficiency evaluation (Doyle & Green, 1994; Sexton and Silkman, 1986) has been 
alternative method for ranking decision making units (DMU) in the data envelopment analysis 
(DEA) (Chrnes & Cooper, 1978). It uses self or peer evaluations for performance assessment of 
DMUs.  Consider n DMUs that are to be evaluated in terms of m inputs and s outputs. Let xij  (i = 
1,…, m) and yij  (r = 1,…, s) be the input and output values of DMUj  (j = 1,…, n). Then, the 
efficiencies of the n DMUs can be written as  , j = 1, n.  where vi  (i = 
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1,…, m) and ur  (r = 1,…, s) are input and output weights. For a specific DMUk , , its 
efficiency reltive to the other DMUs can be measured by the following CCR model [3]: 
Maximize          (4) 
Subject to  , and 
  -  ,  
where j = 1,…, n, r = 1,…, s, and       

Let  and  be an optimal solution to the above model (4). When =1 (where 
), DMUk is referred to as the CCR-efficiency or simple efficiency of DMUk, 

which is the best relative efficiency. if ≠ 1, it is referred to as non-DEA efficient. And 
 is referred to as cross-efficiency of DMUj , which reflects the 

peer-evaluation of DMUk to DMUj (j = 1,…, n; j ≠ k).All DEA efficient units determine an 
efficient frontier. 

CCR model [6] is computed for each DMU, individually. As a result, there are n sets of 
input and output weights for the n DMUs. Each DMU has (n-1) cross-efficiencies plus one CCR-
efficiency (Table 1). Since this model may have multiple optimal solutions, this non-uniqueness 
could potentially hamper the use of cross-efficiency. To resolve this problem, Sexton & Silkman 
(1986) suggested the aggressive formulation for cross-efficiency evaluation, which minimizes the 
cross-efficiencies of the other DMUs to avoid the arbitrariness of cross-efficiency.  
Minimize         (5) 
Subject to  , and 
  -   ,  

 -   , 
where j = 1,…, n; j ≠ k, r=1,…, s, and ,   is the CCR-efficiency of 
DMUk. 

 DMU Target DMU       Average 
   1   2 …          n  Cross-efficiency 

1       …           

2 
  

 … 
 

  
:     :     :        :     : 
n 

  

… 
 

  

              
Table 1: Cross-efficiency matrix of n DMUs 

Department 
(DMU) Outputs       Inputs     

CCR-
efficiency 

  y1 y2 y3   x1 x2 x3   
1 60 35 17 12 400 20 1 
2 139 41 40 19 750 70 1 
3 225 68 75 42 1500 70 1 
4 90 12 17 15 600 100 0.8197 
5 253 145 130 45 2000 250 1 
6 132 45 45 19 730 50 1 
7 305 159 97   41 2350 600 1 

Table 2: Data matrix for seven departments in a university 
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However, it is found that the cross-efficiency evaluation also suffers from the rank 
reversal phenomenon when a non-DEA efficient unit is added or removed. Consider the 
example investigated by Wong & Beasley (2012). There are seven departments (DMUs) in a 
university to be evaluated in terms of three inputs and three outputs (Table 2), which are 
defined as follows: 
x1 : Number of academic staff  
x2 : Academic staff salaries in thousands of pounds 
x3 : Support staff salaries in thousands of pounds 
y1 : Number of undergraduate students 
y2 : Number of postgraduate students 
y3 : Number of research papers. 

It is seen from the CCR-efficiencies in Table 2 that DMU4 is the only department that is 
rated as non-DEA efficient and all the other six departments determine an efficient frontier. 
Table 3 shows the aggressive cross-efficiencies of the seven departments which are obtained by 
solving model (5), which aims to minimize the cross-efficiencies of the other DMUs. It is seen 
that DMU4 is evaluated as the least efficient department and DMU6 is the most efficient 
department.  

It is reasonably expected that removal of DMU4 has no impact on the efficiencies of the 
other six departments because this DMU4 is a non-DEA efficient department and not on the 
efficient frontier. Now DMU4 is removed from the set of DMUs. However, this removal is found 
to have a significant impact on the cross-efficiencies of the other six departments. Table 4 shows 
the aggressive cross-efficiencies of the other six departments after the removal of DMU4. The 
ranking between DMU1 and DMU6 is reversed with DMU1 becoming the best department after 
DMU4 is removed from the set of DMUs. However, it also can be observed that the proposed 
LCM method preserves the original rankings with DMU6 as the most efficient department.  
 
Department 
(DMU) Target DMU           Average 

Ran
k 

LC
M 

Ran
k 

1 2 3 4 5 6 7 

cross-
efficienc
y 

1 1.000 0.845 0.933 0.687 0.645 0.793 
0.75
2 0.808 2 

0.18
9 3 

2 0.335 1 0.618 1.000 0.824 0.701 
0.55
6 0.719 4 

0.19
1 2 

3 0.555 0.848 1.000 0.735 0.813 1.000 
0.41
8 0.767 3 

0.16
6 5 

4 0.069 0.755 0.280 0.820 0.367 0.236 
0.20
6 0.390 7 

0.12
1 7 

5 0.331 0.662 0.315 0.765 1.000 0.699 
0.83
1 0.658 5 

0.16
8 4 

6 0.514 1.000 0.821 0.951 1.000 1.000 
0.61
1 0.842 1 

0.20
2 1 

7 0.151 0.604 0.158 1.000 0.525 0.246 
1.00
0 0.526 6 

0.13
7 6 

 
 Table 3: Aggressive cross-efficiencies of the seven departments 
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Perez & Jineno (2006) pointed out that the rank reversal in the AHP could also be caused 
by the addition or deletion of indifferent criteria. This is also true to the cross-efficiency 
evaluation. For convenience, we consider an input or output as unimportant if it makes no 
contribution to CCR-efficiency. When an unimportant input or output is added or removed, the 
cross-efficiency evaluation may also suffer from the rank reversal phenomenon.  

Department 
(DMU) Target DMU         Average Rank LCM Rank 

1 2 3 5 6 7 
cross-
efficiency 

1 1.000 0.845 0.933 0.645 0.933 0.752 0.851 1 0.170 3 
2 0.335 1 0.618 0.824 0.843 0.556 0.696 4 0.172 2 
3 0.555 0.848 1.000 0.813 1.000 0.418 0.772 3 0.150 5 
5 0.331 0.662 0.315 1.000 0.478 0.831 0.603 5 0.151 4 
6 0.514 1.000 0.821 1.000 1.000 0.611 0.824 2 0.183 1 
7 0.151 0.604 0.158 0.525 0.278 1.000 0.453 6 0.123 6 
 
 Table 4: Aggressive cross-efficiencies of the six departments without DMU4 

  
   

As is known for most multiple comparison decision making problems, in order to get rid 
of the dimensions of different decision attributes, normalization is necessary. Examples of the 
rank reversal seem to depict that the rank reversal is presumably caused by procedural flaws of 
the normalization method. The alternative approach to yield the most reliable initial ranking 
and to preserve the ranking is proposed in next section.  

 

3.  A proposed Least Common Multiple (LCM) approach 
Shin et al. [13] propose an alternative approach that converts all measurement values of 

alternatives to the commensurate values by multiplying a least common multiple (LCM) of all 
column sums of criteria in the decision matrix. Before the composite weights of all alternatives 
are computed, a matrix, Aij’  is multiplied by L, a least common multiple of all column sums of 
criteria, where  

 
                       
Now the weight vector of criteria (Cj ) is given by Cj = [ c1     c2       c3   -------------   cj ]T. Then, 

multiplying the criteria weight vector Cj by the revised value matrix  Aij’’  yields the following 
data matrix, Xi. 
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Finally, the normalized composite weights of alternatives are obtained from the 
following equation, 
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Because of the converted matrix of the unified commensurate unit, rank reversal 
problems in the AHP can be prevented without adjusting the weights of criteria or wondering 
about structural or functional dependency and independency.  To verify the validity of our 
proposed approach, the next paragraphs present the results of LCM mode by re-examining the 
decision matrices used in the cross-efficiency evaluation examples in the previous section.  

Consider the same numerical example in Table 2. It is seen that output 3 has no 
contribution to the CCR-efficiencies of the seven departments. For an unimportant input or 
output, it can be removed from the set of input or output indices without any impact on the 
CCR-efficiencies. However, Table 5 shows that the ranking between DMU1 and DMU6 is 
reversed after output3 is removed from the set of outputs.  

These rank reversal phenomena give rise to a question. That is whether an unimportant 
input or output should be involved in the cross-efficiency evaluation. However, the proposed 
LCM method provides a consistent ranking of an original set of alternatives and preserves the 
original rankings where either the least efficient DMU or an unimportant input or output is 
dropped out from the decision making data matrix. Additionally, regarding the ranking of the 
original set of DMUs, the proposed method yields DMU2 as the second best efficient 
department, which is different from that computed by the Cross-efficiency method in Table 3. 
 

Department 
(DMU) Target DMU           Average Rank LCM Rank 

1 2 3 4 5 6 7 cross-efficiency 
1 1.000 0.845 0.933 0.688 1.000 0.933 0.752 0.879 1 0.610 3 
2 0.335 1 0.618 1.000 0.702 0.843 0.556 0.722 4 0.619 2 
3 0.555 0.848 1.000 0.735 0.555 1.000 0.418 0.730 3 0.502 6 
4 0.069 0.755 0.280 0.820 0.242 0.441 0.206 0.402 7 0.439 7 
5 0.331 0.662 0.315 0.765 1.000 0.478 0.831 0.626 5 0.515 4 
6 0.514 1.000 0.821 0.951 0.792 1.000 0.611 0.813 2 0.625 1 
7 0.151 0.604 0.158 0.999 0.985 0.278 1.000 0.597 6 0.513 5 
                        

Table 5: Aggressive cross-efficiencies of the seven departments without output3 

 4.  Conclusion 
It is assumed that the AHP is a powerful multi-criteria decision making method and will 

continue to be useful for many future cases as it has been in the past. Despite this widespread 
usage, the AHP still suffers from some theoretical disputes. Rank reversals are also found in 
many other well-known MCDM methods. Many studies argue that the rank reversal 
phenomenon is unpreventable when any MCDM method is applied.   

As seen in the rankings in Table 3, another primary criticism of MCDM methods is that 
due to the differences among different techniques, inconsistent results are obtained when 
applied to the same decision problem. It is important that a good MCDM method must not yield 
the ranking reversals when an alternative is added or removed. Even though the proposed 
method does not suffer from those problems, it is more important that additional research in 
decision analysis is necessary to produce the reliable rankings one may trust.      
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