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Abstract 
This paper uses quantitative methods to estimate the sizes of the time buffer for different customer 
classes in lean supply chain operation. It discusses mathematically exact expressions for expected 
waiting time and the variation of waiting time for multi-classes. A queuing theory based method is 
applied to calculate the time buffer sizes. It provides a mathematically tractable expression for Markov 
queues and approximates the mean and variance of waiting time in general queue. The results are 
implemented in manual or spreadsheet calculations which can be used to conduct what-if analysis. 
 

 

1. Introduction 
 Supply chains have proven instrumental in improving efficiency within many 
industries, such as Wal-Mart in retail and Dell in computers .The link between supply chain 
and financial performance revealed that virtually all winning business strategies have, at 
their core, supply chain strategies that provide a competitive advantage. It becomes 
increasingly apparent that the battleground has been shifting from competition between 
enterprises to competition between supply chains. A survey by the Supply Chain Council 
found that, on average, enterprises spent about 11 percent of revenue on supply chain 
management, yet best-in-class enterprises go to the cost down to between 3 and 6 percent. 
Reducing logistics driven costs by 5 percent would save about $50 billion in US. 
 Lean supply chain strategies focus on waste reduction, helping firms eliminate non-
value adding activities related to excess time, labor, equipment, space, and inventories 
across the supply chain (Ma 2011). Such strategies enable firms to improve quality, reduce 
costs, and improve service to customers as traditional batch and queue mass production and 
supply chain approaches are transformed. Lean supply chains adapt to changing customer 
needs and still deliver products quickly. As a result, firms that are part of a lean supply 
chain have lower costs than their competitors.  Lean practices are becoming increasingly 
difficult to implement and sustain as supply chains increase in complexity and length. 

Although the potential benefits are huge, building and managing a lean supply chain 
poses a challenge because supply chain activities are so highly interconnected. The present 
business environment is also significantly more challenging than the business environment 
of the production-centric era that prevailed for the greater part of 20th century. In today’s 
customer centric world, production capacity exceeds customer demand in many industries. 
Prices are now determined by more competitive market forces than existed when capacity 
constrained sales volume. Consumers are demanding better products, and want them 
cheaper and faster. To stay competitive, firms are compelled to respond to these customer 
demands even as product life cycles are getting smaller. 
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The consumer centric era requires business to manage their supply chain in a 
radically different manner. To respond to increasingly demanding consumers, firms not 
only have to excel at producing the goods or service they sell; they must also excel at 
delivering products quickly and efficiently to the consumer. A firm that provides quick 
response to customers’ needs is able to attract more clients and encourage brand loyalty, 
increasing its market share; it can even win a price premium for speed and punctuality of its 
deliveries. A certain degree of elasticity to delivery time characterizes not only consumers' 
demand, but intermediaries' too, due to lower risk for less anticipated replenishment orders. 

Both empirical evidence and logic suggest that there is a strong negative correlation 
between waiting time and a customer's evaluation of the quality of a supply chain service 
(Davis and Heineke 1998). A waiting time guarantee is a firm’s commitment to its customers 
that it will deliver the products within a specified period of time. A firm can enhance 
customer waiting experiences by providing assurances of products or services within the 
expected time as well as evidence for the progress that customers are making in the system. 
Firms commit themselves to a given waiting time guarantee by selecting appropriate 
capacity levels. To estimate the waiting time guarantee (maximum waiting time), managers 
need to know both the average of waiting time and the variance of waiting time. In many 
systems, the worst case-time buffer value of flow time is very relevant because it represents 
the turnaround time that can safely be promised to the customers. Thus, it is essential to 
recognize and understand how to estimate the buffer time in supply chain operations.  

Research on customer waiting time has traditionally been the domain of queuing 
theory. Queues occur because of uncertainty in the environment; whenever the demand for 
service exceeds the ability to provide service, a queue forms. A major distinction classifies 
queues according to the number of servers and the distributions that characterize the arrival 
rates of customers (or their inter-arrival times) and the service times. From a statistical 
perspective, the random arrival process is not necessary described with the Poisson 
probability distribution. Similarly, the exponential probability distribution is inappropriate 
when a wide range of service times is possible (Hopp and Spearman 2000). Kendall notation 
A/B/n is widely accepted in queuing system. In this notation, the A, B, and n denote, 
respectively, the inter-arrival time distribution, the service time distribution and the number 
of servers. In other words, most service operation queuing problems are represented by a 
general GI/G/n system (G for general, I for independent arrivals). 

Recent years have witnessed a growing volume of good quality approximations for 
the GI/G/n queue (Kimura 1986, Shore 1988, Whitt 1993, 2004, Holland and Griffiths1999, 
Atkinson 2008). While the accuracy of these approximations is usually satisfactory, they 
often result in algebraically intractable expressions. This hinders attempts to derive closed-
form solutions to the decision variables incorporated in optimization models. It often leads 
to the use of complex numerical methods or to recursive schemes of calculation. 
Furthermore, actual application of many of these approximations is often obstructed due to 
the thorough specification that is needed of inter-arrival or service time distribution. No 
general theoretical formula exists that provides a platform to calculate control limits for 
GI/G/n.  

In addition, all literature focuses on the probability of customer waiting and the average 
waiting time. The analysis of the variance of waiting time remains unsolved due to its 
inherent complexity. There exists no mathematically tractable general formula for 

approximating the standard deviation of waiting time q in the GI/G/n queue.  Only 

bounds or approximations of waiting time have been found in the literature. When these 
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bounds are used as approximations, they appear to be rather crude (Whitt 2004, Metters and 
Pullman 2003). Simple and easy to use formulae are available for determining the average 
(e.g. Sakasegawa 1977), but not the standard deviation. For operations practitioners, this 
requires spreadsheet formulae for determining not only the average waiting time but also 
the standard deviation of the waiting time in the GI/G/n queue. Authors are not aware of 
any other spreadsheet model that is specifically designed to analyze the variance of waiting 
time in GI/G/n queue. 

This paper develops an easy to use spreadsheet model to estimate the mean and 
standard deviation of waiting time for different customer classes. The approximation 
requires only the mean and standard deviation or the coefficient of variation of the inter-
arrival and service time distributions, and the number of servers. It is simple enough to be 
implemented in spreadsheet calculations. The rest of this paper is organized as follows. In 
section 2, we derive exact expression for the coefficient of variation of waiting time for 
G/M/n, M/G/1 queues and develop interpolation approximation for variance of waiting 
time for the general queue GI/G/n. In section 4, numerical results show that the 
approximations are accurate enough to be applied to practical service operations. Section 5 
delivers concluding remarks. 
 

2. Analytical Models 
To develop the approximation of the standard deviation of waiting time in the 

GI/G/n queue, we have studied the equivalent problem of finding a mathematically 
tractable formula to approximate the coefficient of variation of waiting time

qqq Wc  , 

where 
qW and 

q are respectively the average and standard deviation of waiting time. There 

exist some good approximations for the average waiting time (Kimura 1986, Whitt 1993). For 
instance, Sakasegawa (1977) presented the following closed-form expression for the average 
waiting time in the GI/G/n queue: 
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ac Is the coefficient of variation of inter-arrival time and 
sc the coefficient of variation of 

service time. 
This formula offers several advantages (Whitt 1993). Although it may appear 

complex, it does not require any type of iterative algorithm to solve and therefore can be 
easily implemented into a spreadsheet program. This also makes it possible to couple the 
single-station approximation with the multiple-server to create a spreadsheet tool for 
analyzing the performance of a series of queues. The formula is used in our research when 
calculating average customer waiting time for GI/G/n queue.   
We first present a general expression for 

qc which is applicable to G/M/n and M/G/1 

queues. Then we form a conjecture that the expression provides a good approximation for 
GI/G/n queues and test this conjecture via Mont Carlo simulations. In the following, λ is the 
arrival rate, μ is the service rate, and  is utilization. 
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moments of the service time distribution. For / /1M G , we 
know  1)0(1)0( qq TPTP . Therefore, 
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We conjecture that formula (2) can be used as an approximation for the nGGI // queue since 
it applies to both nMG // and / /1M G .Whitt (1993) conjectured that the exact formula for 

the distribution of waiting times of / /1M G  can be used as an approximation for the 

nGM //  model.  Seelan and Tijms (1984) provided additional support for this 
approximation. 
 

3. Priority Queues 
In the above models, all the models considered have the property of a first come first 

served discipline. This is not the only manner of service, and there are many alternatives, 
such as last come, first served, selection in random order, and selection by priority. A very 
considerable portion of real life queuing situations contain priority considerations. Some 
companies may decide to divide their customers into different priority queue classes to 
receive services according to their required service time and the price they are willing to 
pay. For example, customers in a high priority queue class would receive their goods or 
services immediately while a lower priority queue class may accept a delay in return for a 
discounted price. It is very important to analyze how to manage this system as it is a 
complex task to provide goods and services to customers with different delivery or service 
waiting times and in different priority classes. 

In priority schemes customers with the highest priorities are selected for services 
ahead of those with lower priorities, independent of their time of arrival into the system. 
Priority queues are generally more difficult to model than non-priority situations. The 
determination of stationary probabilities in a non-preemptive Markov system is an 
extremely difficult matter.  

There are two further refinements possible in priority situations, namely, preemption 
and non-preemption. In preemptive cases, a customer with the highest priority is allowed to 
enter service immediately even if another with lower priority is already present in service 
when the higher customer arrives. That is the lower priority customer in service is 
preempted, his service stopped, to be resumed again after the higher priority customer is 
served. In addition, a decision has to be made whether to continue the preempted 
customer’s service from the point of preemption when resumed or to start anew. On the 
other hand, a priority discipline is defined to be non-preemptive if there is no interruption 
and the highest-priority customer just goes to the head of the queue to wait its turn. The 
customer can’t get into service until the customer presently in services is completed, even 
though this customer has a lower priority. The non-preemptive approach is preferred for 
most call center priority applications because it best preserves the invisibility aspect of the 
prioritization process. It is also preferred in most applications where immediate service is 
not the sole reason for the priority and where the line behavior is observed by all customers 
because it is perceived as being fairer than the preemptive approach. 

Queuing systems with customer priorities and queuing systems with customer 
transfers have wide applications in manufacturing, computer networks, telecommunication 
systems, and vehicle traffic control. The study of such queuing systems is extensive. Existing 
works address issues related to system stability, optimal scheduling, routing, and 
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performance analysis. For example, some of the existing works focus on system stability 
conditions, some on the stationary analysis of the queue length(s) and waiting times, and 
some on customer transfer strategies. The queuing model of interest is also related to, but 
not included in, stochastic transfer networks. In addition, the literatures focus on a product-
form solution, rather than stability conditions. 
The queuing model of interest consists of s identical servers serving N types of customers: 
type 1, type 2. . .and type Customers. Type 1, 2…and N customers form queue 1, 2…and N, 
respectively. Type N customers have the highest service priority, type N-1 the second 
highest service priority . . . and type 1 the lowest service priority. When a server is available, 
it chooses a customer from the non-empty queue of the highest priority and begins to serve 
it. If some servers are serving type j customers when a type k customer arrives, for j < k, 
there is no idle server, and type j customers are the lowest priority customers in service, then 
one of the type j customers in service is pushed back to queue j and the server begins to 
serve the type k customer. The type j customer will resume or repeat its service if a server is 
available to serve type j customers. 
Type 1, 2, and N customers arrive according to independent Poisson processes with 

parameters 1 , 2 …and
N  , respectively. The service times of type 1, 2… and N customers 

are exponentially distributed with parameters 1 , 2 …and
N  ,respectively. The arrival 

processes and service times are independent. Since the service time of a type j customer is 
exponentially distributed, it does not make a difference to assume that its interrupted 
service, if it occurs, will be repeated or resumed. For the same reason, if a server is available 
to serve type j customers, it does not matter (to system stability/instability) which waiting 
type customer enters the server to receive service? 

The number of priority classes can be any number greater than one, and if there can 
be more than a single customer in any given priority class in the system simultaneously, 
then the discipline of selecting customers within the same priority class must also be 
specified. 

In this research, we focus on the non-preemptive nGGI // system with many priorities. 
Within each priority class the FIFO discipline holds. Due to the difficulty of the 

determination of stationary priorities of nGGI // , and the difficulty of handling multi-index 
generating functions when there are more than two priority classes, we use the similar 
approximation method analogous to the nMM // priority queue. 

For non-preemptive Markov systems with many priorities, we use the results of 
Gross and Harris (2002) to derive the formula we used in our spreadsheet. Suppose that the 

items of the kth  priority (the smaller the number, the higher the priority) arrive before a 
single channel according to a Poisson distribution with parameter ),...2,1( rkk  and that 

these customers wait on a FIFO basis within their respective priorities. Let the service 

distribution for the kth  priority be exponential with mean k/1 .Whatever the priority of a 

unit in service, it completes its service before another item is admitted. We begin by defining 
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The analysis for the multiple-channel case is very similar to that of the proceeding model 
except that it must now be assumed that service is governed by identical exponential 
distributions for each priority at each of s channels. For multiple channels we must assume 
no service time distinction between priorities or else the mathematics becomes quite 
intractable.  
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For the nGGI // priority queue, we use the similar approximate method analogous to the 

nMM //  priority queue. We conjecture that the mean waiting time for each priority class 

has the similar relations of those of the nMM // priority queue. The above formulas are 
used in our spreadsheet to calculate average flow times in non-preemptive priority queues.  
 

4. Simulation and Numerical Comparisons 
To evaluate the accuracy of the approximations, we conduct simulation experiments 

using the ExtendSim simulation program. The testing of our approximations has been based 
on extensive simulation experiments. In this simulation research, we performed 
independent replications using 54000 minutes of simulation time and estimated 95 % 
confidence intervals. Both Weibull and Gamma distributions are used as general 
distribution. For Gamma distribution, when shape parameter k is positive integer, Gamma is 
reduced to Erlang. When k=1, it is exponential. When k∞, it is deterministic. 
  Simulation experiments confirm that the approximations perform remarkably well 
across a wide range of cases.  In most of these cases the standard deviation of the time in the 
system obtained with the spreadsheet was within 10% of that obtained in the simulation. 
The limitation is that our result is under the assumption that the coefficients of variation of 
the inter-arrival times and the service times are between 0 and 1.25, which is usual in 
practice. When coefficients of variation are greater than1.5, the performance of the queue 
itself becomes very unstable. As noted by Whitt (1993), greater variability means less reliable 
approximation, because such descriptions evidently depend more critically on the missing 
information. 

We present a representative set of tables comparing the approximations with exact 
(simulation) values. There are two standard ways to measure the quality of queuing 
approximations: absolute difference and relative percentage error (Whitt 1993). We contend 
that neither procedure alone is usually suitable over the entire range of values. We can 
obtain satisfactory results if either the absolute difference is below a critical threshold or the 
relative percentage error is below another critical threshold. Thus, a final adjusted measure 
of error (AME) might be:  

 ./).(100,.min exactapproxexactapproxeaxctError  . 

Either the relative percentage error or the absolute difference should be small. Here 
we have simulation results corresponding to different experiments. These tables display 
expected mean and standard deviation of cycle time in specific queuing systems. The 
difference and relative error analysis are displayed in a separate spreadsheet.  For those 

cases with both 25.1, sa cc ，the approximations appear to be remarkably accurate. 

    Simulation experiments confirm that the approximations perform remarkably well 
across a wide range of cases.  In most of these cases the standard deviation of the time in the 
system obtained with the spreadsheet was within 10% of that obtained in the simulation. 
The limitation is that our result is under the assumption that the coefficients of variation of 
the inter-arrival times and the service times are between 0 and 1.25, which is usual in 
practice. When coefficients of variation are greater than1.5, the performance of the queue 
itself becomes very unstable. As noted by Whitt (1993), greater variability means less reliable 
approximation, because such descriptions evidently depend more critically on the missing 
information. 

The tests show that the standard deviation does not change dramatically when Weibull 
distributions are used instead of gamma distribution.  This suggests that the standard 
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deviation tends to be insensitive to “reasonable” changes in the distribution assumptions, 
and hence our approximation will work well for these different distributional assumptions. 
The approximation tends to be closer to the simulation results obtained with gamma 
distributions than with Weibull. 
 

4. Conclusions 
This research provides a mathematically exact expression for the standard deviation 

of waiting time for Markov queues. It then applies this expression to give a two-moment 
approximation to the standard deviation of waiting time for a general queue with infinite 
waiting capacity. With quantitative results, this paper has presented an analytical approach 
to estimate the sizes of the time buffers in lean supply chain operations. The measurement 
requires only the mean and standard deviation or the coefficient of variation of the inter-
arrival and service time distributions, and the number of servers. The quality of the 
approximations is not the same for all cases, but in comparisons to Monte Carlo simulations 
has proven to give good approximations. A significant feature of the approximation 
methods is that it is mathematically intractable and can be implemented in a spreadsheet 
format.   
  It is clear that the scheduling goal is to minimize the value for each measure. Because 
priority rules do not all affect performance measure to the same degree or the same manner, 
a manager should select a rule that best address the performance measure that is most 
important for his business. If all jobs must go through the same sequence of steps or 
operations, the queuing analysis models discussed above can be used to determine which 
scheduling priority rule provides the lowest performance measure values for a particular 
business.  

We observed that using priorities increases the variability of waiting times: the 
higher the percentages of customers getting preferential treatment, the higher the variability. 
Because variability adds uncertainty to business outcomes, using priority rules in processing 
waiting line customers should be carefully considered. If used, it should be limited to only a 
small percentage of the arrival population. Some models have been developed to determine 
the increased variability in average waiting time when using both non-preemptive and 
preemptive priorities. (Hillier and Lieberman 2010, Haussman 1970). These models also aid 
in determining the degree of reduction in the average waiting time for higher priority 
customers and the concomitant increase in waiting time for lower priority customers. 
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