ABSTRACT
One important detected market need is that class B and C customers need to wear fashion brands with low prices, while clothing brands in the world want to sell their unsold old seasons stock at the best prices. In addition, a lot of individuals or small businesses want to sell refurbished, used, or even new clothes to make money, reduce textile waste, and preserve the environment. Those determined market needs can be satisfied by introducing ThriftIT. ThriftIT is a web based online thrift store built to decrease the environmental crisis caused by textile waste, enable class B, and C customers to buy fashion brands with low prices, and help clothing brands to sell old season stock at the best price, and help small businesses to reach a large online customer base to sell its products and grow.

INTRODUCTION
ThriftIT will be an online version of a thrift store. The web based online store will have two main sections: the first section will be for selling and buying used, or refurbished items provided by customers and the second section will be for selling and buying new items belong to end-of-season or old seasons stock that have not been sold by on-ground retailers of fashion brands or new items provided by small businesses with discounted prices. The used items must satisfy a comprehensive set of criteria before being accepted to be sold on the online store. The offered new items must be in a high quality and low prices.

METHODOLOGY
Software Project Development followed the Waterfall Model as an appropriate software development model, and the following phases were implemented:
1. Preparing Project Proposal that includes:
 SW project Objectives, Importance, Main System, Expected Implementation tools, and Plane of work.
2. Implementing Project Planning and Scheduling which includes preparing:
 Project Task Table, Pert Diagram, Staff Allocation Chart (Gantt chart) using Microsoft Project.
3. Preparing a Project Feasibility Study includes:
 Estimating Software Price, Performing Break-even analysis, and Cash Flow analysis.
4. System Analysis includes applying:
 • Identifying user requirements, and detailed proposed system functions that achieve system objectives by making interviews with market stakeholders, and thrifting experts.
 • Preparing system analysis documents using Structured analysis Techniques (Data Flows Diagrams, Process Logic Description, Data Dictionary), and Object-Oriented A&D Techniques.
5. System Design includes:
 System Database design using Entity Relationship Model, User Interface Design, System Modules design, and system Validation and Verification plan design using structured and OO Design Techniques.
6. Implementation & Testing
 • PHP will be used for server-side programming. HTML, CSS, and JavaScript will be used for front-end side programming. MySQL will be used as DBMS for system database implementation. Apache HTTP Server is a free and open-source web server that delivers web content through the internet.
 • Implementing system Validation and Verification plan that includes system unit testing, system testing to test the system as a whole, and user acceptance testing.
7. System Production (Publishing) and Maintenance
 Publishing the web-based application on a web server and make any future required system maintenance related to new user requirements and enhancing system efficiency.

RESULTS
• Connecting buyers with sellers.
• Decreasing the environmental crisis caused by textile waste.
• Decreasing the gap between classes B, and C with brands.
• Helping small businesses to grow.
• Bringing awareness to “The global fashion waste crisis “
• Spreading more the culture of thrifting in Egypt.

CONCLUSION
• By implementing the proposed solution, the awareness of thrifting in Egypt will be created.
• The system is able to Increase the chance of middle-, and low-income people to have high-quality clothes with affordable prices.
• The system is successful in Encouraging our customers to be more reliant and trusting using their credit card in online transactions.

ACKNOWLEDGEMENTS
Many thanks to:
Prof. Nagwa Khashaba FCBA Faculty Dean for her encouragement and support.
Associate Prof. Ahmed Sayed Salama for his continued valuable technical guidance and support.